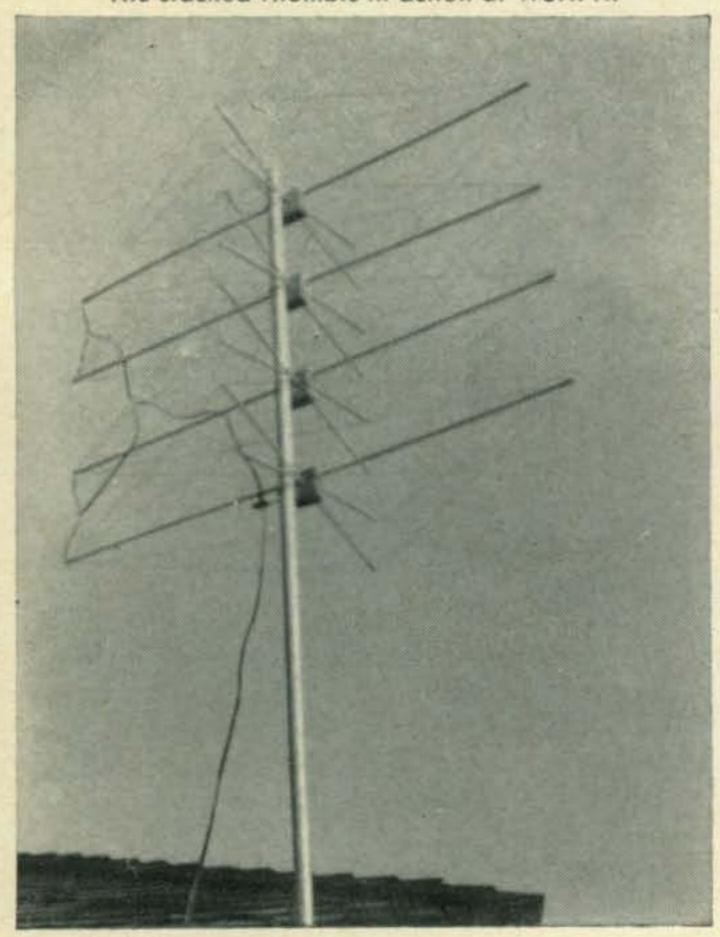
A Stacked Rhombic Array for 1296 Mc

Frederick W. Brown, W6HPH


Box 78, Star Route Idyllwild, California

Ease of construction and low wind resistance are essentially the advantages derived from this high gain 1296 mc stacked array.

T 1296 mc, a wavelength is so small that practically any form of antenna becomes feasible and a multitude of types have been developed that could be used. The main problem is to choose the most practical form. From the amateur viewpoint, the most desirable characteristics of a 24 cm antenna would be: (1) high gain, (2) low wind resistance, (3) low cost, (4) light weight, (5) ease of construction, (6) "loose" dimensional tolerances, (7) small over-all size. Obviously, some of these requirements are mutually conflicting; for instance, the requirement for high gain usually conflicts with all of the others. By far the most popular communications antenna in the microwave region is the parabolic dish, but in terms of the above requirements it is not a particularly high performance antenna.

Most antenna types may be placed in one of two categories; the aperture type, or the endfire type. Examples of the aperture type an-

The stacked rhombic in action at W6HPH.

tenna are the dish, the horn, the bedspring array, etc. The end-fire class may be represented by such forms as the Yagi, the Polyrod antenna, the Cigar antenna, etc. The Rhombic, along with the V is somewhat unique in that it finds a home in neither category, but is kind of a hybrid between the two. The H-plane (vertical plane for a horizontal rhombic) directivity is achieved entirely by end-fire means, whereas the E-plane beamwidth is determined by a combination of end-fire and broadside directivity. For this reason, a typical rhombic will have an H-plane beamwidth about twice as great as in the E-plane. In the case of a horizontally polarized rhombic, this is just the opposite of the desired pattern since only that power confined to within a few degrees of the horizon is useful. Power radiated at a large angle with respect to horizontal is wasted into outer space or into the ground nearby. At the same time, a narrow azimuthal beam has the disadvantage of less angular coverage (fewer people will hear your CQ and conversely). Of course, reducing beamwidth is the only way we can increase gain (assuming small minor lobes), and for the above reasons, it would be much wiser to reduce the beamwidth in the vertical plane. This is readily done by stacking vertically. In the case of rhombics, the spacing between bays need not be large because of the broad H-plane lobe to start with.

This array consists of 4 identical rhombics, each patterned after the antenna described by Triolo.¹ The gain of each is about 13.5 db and four, stacked, gives about 19.5 db, nearly as much as a four foot dish (with considerably less wind resistance). Front-to-back ratio is about 5 db, and may be increased to at least 12 db by terminating each rhombic with a 620 ohm, ½ watt carbon resistor. The termination does not affect the gain however, since it merely absorbs the power that would otherwise be radiated to the rear. QRM is not a problem on the u.h.f. bands, so it is just as well to leave the array unterminated, and theoretically this results in a slightly lower antenna noise temperature.

¹Triolo, F. J., "A Novel Antenna For Mobile Radio Relay Operation in the UHF Range." 1958 IRE National Convention Record, Part 1. pp 183-192.

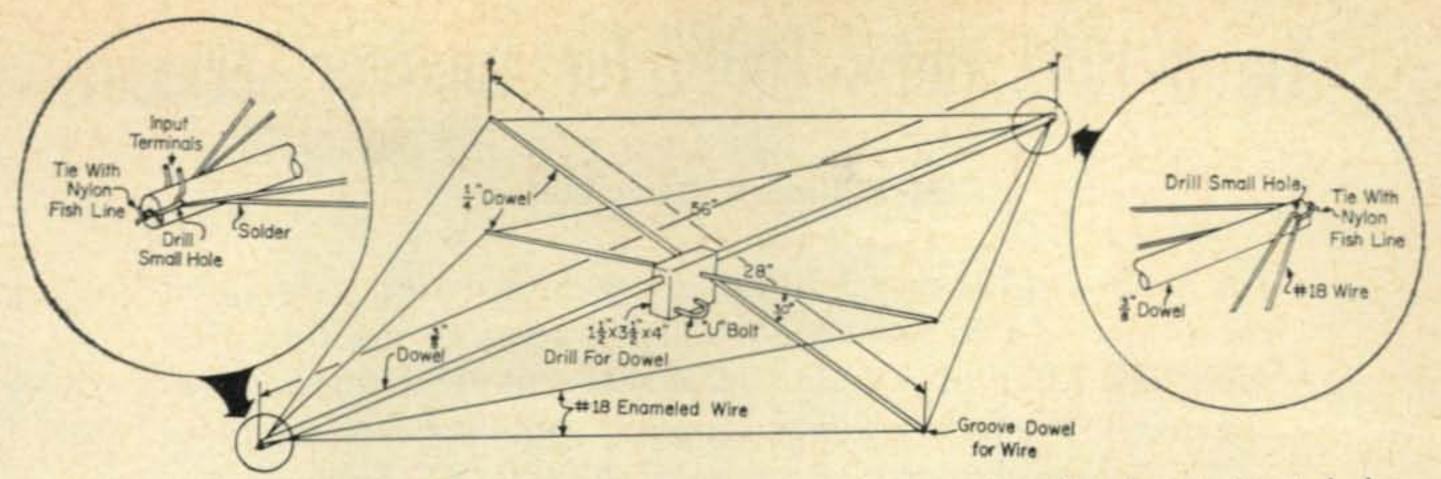


Fig. 1—Construction details for a 1296 mc rhombic. Pictured is one of the four bays to be stacked vertically.

Construction

Dimensions and necessary construction data for each rhombic are given in fig. 1. The block in the center is a piece of 2×4 drilled to take the dowel supporting members. Try to select dowel with a straight grain to minimize warpage. All wooden parts should be given two coats of premium quality house paint (any color) to protect them from the weather. The cost per rhombic, neglecting the U-bolt is about 30 cents.

The spacing between bays is 12 inches. Correct phasing is insured by feeding pairs as in fig. 2. The phasing harness may be made of 300 ohm ribbon. Matching is achieved by wrapping the twinlead transmission line with a small

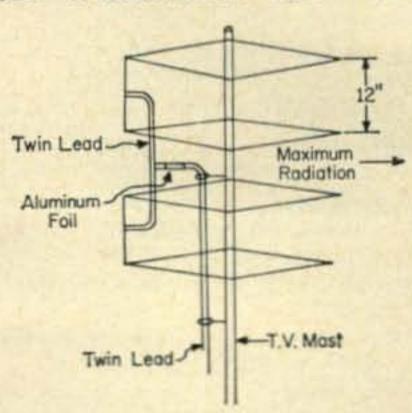


Fig. 2-Method of stacking and phasing the rhombics. The aluminum foil wrap on the feedline is adjusted for a proper match.

piece of aluminum foil near the point where it connects to the phasing harness. This is the simplest, quickest, and probably the most efficient way to match a u.h.f. antenna. Both the position and length of the foil section must be adjusted for minimum s.w.r. After the correct adjustment is found, the foil is wrapped with masking tape and doped with house paint to make it water tight.

Transmission Lines

A word is in order about transmission lines at this frequency. Twinlead or open wire line is recommended, unless some very low-loss coax is available. Even ordinary dime store twinlead has much lower attenuation than RG-8/U. The radiation losses are negligible and are independent of the length.2 Also, most antennas have balanced temminals which are more adaptable to parallel wire line. A balun is needed at the station end of course, and a half wave coax balun at 432 mc will work fine as a 3/2 wave balun at 1296 mc.

This array, being extremely broad-band, will show some gain (about 9 db) at 432 mc. Results on 1296 have been highly rewarding, measurements indicate the gain to be at least 19.5 db, and on-the-air reports confirm this.

2Skilling, Electric Transmission Lines, McGraw-Hill, pp 329.

RESULTS VK/ZL CONTEST 1960

C.W. WINNERS				
No. America	So. America	Europe		
W1GYE 495	HK7ZT 176	DL1FF2054		
W2EQS2639	CE3AG1575	EA3CY 72		
W3RNY 45	YV3AS 240	F2MA 221		
W4FIJ3535	Asia	G4CP1176		
W5KC4104	JA1VX4824	HB9MO 392		
W6LDD5120	BV1US 216	OE1RZ 768		
W7IMA2720	MP4BCV 126	OZ7OMR 40		
W8JIN4176	VS9ADL 72	OK1LM 624		
W9WNV3344	XZ2TH 400	PAØTAU 108		
WØBMM 336	UAØAG 310	OH5RU 152		
KL7ALZ 792	Oceania	ON4LX 352		
VE3BWY 779	FK8AH1675	LASGF 15		
KP4CC 390	KØSLD/	SP6FZ 640		
TI2CMF 96	KW65670	SM5LL1000		
XE1PJ 424	VR1B4294	SVØWZ 9 UB5KAB1430		
	ZK1AR 836	UR2BU 9		
Africa FASRJ 210	KH6DMW 616	UA1DZ1440		
F MORE 210	ALIODAIN 010	011100		

PHONE WINNERS

No. America	Europe	Asia		
W1WY 15	DL3LL 511	JA3AA 72		
W4SIB 162	EA3JE 250	BV1US 184		
K5KBH2176	G5HZ 128	OD5CT 84		
K6RTC 520	CT1EY 216	9M2DQ2250 UAØKIA 28		
W8JIN 480	OE1RZ 55	Oceania		
K9ECE 96	OH5SM 230	KH6DLD 611		
VE3DDI 96	SM5ACC 90	KØSLD/		
VE6TF 15	UR2BU 112	KW61200		
		ZK1AR 630		
TG9CP 560	Africa	So. America		
TI2CMF 10	ZS6NE 338	YV1EE 126		
TIV /OF TEXAPER				

VK/ZL LEADERS

C.W.		Phone
VK5NO14,045	ZL1AH13,535	VK5MS13,790
VK2GW12,495	ZL1AIX11,705	VK5NQ 7450
VK9XK 9815	ZL1AJU .11,240	VK9NT 3880
VK2ADE 9490	ZL1APM 10,960	ZL1AIX11,755
VK3DQ 8415	ZL1HS10,365	ZL1KG 8540
VK7SM 6505	ZL2AWJ 10,275	ZL1AH 6350